The impact of observational nudging and nesting on the simulated meteorology and ozone concentrations from WRF-CMAQ during the DISCOVER-AQ 2013 Texas Campaign

Xiangshang Li, Yunsoo Choi, Beata Czader Earth and Atmospheric Sciences University of Houston

DISCOVER-AQ Simulation

- September 2013
- Four complete set of WRF-SMOKE-CMAQ simulations; new model version and 2008 inventory

WRF Cases	Туре	# of	Input Analysis Data	FDDA Obs-Nudging
		Domains		
AQF	Forecast	1	NAM forecast	N/A
NARR	Analysis	1	NARR analysis	Off
NARR-OA	Analysis	1	NARR analysis	On
NARR-Y2D	Analysis	2	NARR analysis	On

- Detailed analyses
 - By Period (three 10-day period)
 - Variables
 - Meteorology: T/U/V/CFRAC/CLDT/TEMP2/PBL
 - Chemistry: Ozone/NO/NO₂/NOx/Isoprene etc

DISCOVER-AQ Simulation

DISCOVER-AQ Simulation

Analyses

- Various satellite cloud, radar images and weather charts
- Hourly precipitation data
- Full statistics (CORR, IOA, MB, MAE etc) for major variables (T/U/V/O₃/NO/NO₂/NOx)
 - Daily
 - By site
 - Day-time
 - Night-time
- Spatial and time-series plots
- High ozone episode due to front passage (09/25-09/26)
- Inland and coastal sites
- Background ozone
- Bogus thunderstorms

Satellite Visible – 20130925_11 CST

Radar – 20130925_11 CST

Ozone at La Porte

09/25 high ozone

Model missed the high ozone around La Porte

Land/Sea/Bay breeze etc

- Land breeze and sea/bay breeze
- Local wind reversal, convergence
- Small-scale phenomenon, short life time, a few hours
- Occurs when large scale forcing is absent -> prone to high ozone
- Extremely important for simulating high ozone episode
- Hard for WRF to replicate

Observation nudging

- FDDA is one of the most important components in modern NWP models
- Model performance gain is substantial while cost is relatively low
- Nudging is a FDDA method to push (or nudge) model values toward observation.
 - Grid nudging uses analysis input ('met_em' files from WPS)
 - Obs-nudging uses observation data (OBS_DOMAIN files from WRF-OBSGRID)
- Obs-nudging is performed every 3 hours, just like the grid nudging

Improvement of IOA: Wind (U and V) 10-14%; Temperature 9%

20090530: Houston Wind - WRF

Improvement significant

WRF Obs nudging – op. flow chart

WRF simulation paradigm

OA did not solve the problem for 09/25

Current work: Enhanced obs nudging

- In 09-25, last nudging is performed at 9 CST, yet baybreeze onset is at 10 CST
 - From 10 to 13 CST, there is only one nudging done at 12 CST -> Not enough push to 'bend' model!
- Possible solution
 - Increase the obs nudging frequency to hourly!
 - Data available, already preprocessed

WRF does not support it \(\)

- Can we still do it?
 - Actively working on it!
 - First task (modify OBSGRID code) done!
 - On 2nd task (modify WRF)

